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Abstract20

Tropical deep convective clouds are important drivers of large-scale atmospheric21

circulation representing the main vertical transport pathway through the depth of the22

troposphere for heat, momentum, water, and chemical species. The strength and depth23

of this transport are impacted by the convective updraft size and intensity that are driven24

by buoyancy, dynamical forcing, and mixing of environmental air, i.e., entrainment. In25

this study, we identify tropical deep convective systems with well-defined forward anvils26

using Atmospheric Radiation Measurement (ARM) ground-based profiling radars, at three27

ARM fixed-sites in the Tropical Western Pacific (TWP; i.e., Manus, Nauru, Darwin) and28

three ARM Mobile Facility deployments in Niamey, Niger; Gan Island, Maldives; and29

Manacapuru, Brazil. We use the difference between the level of neutral buoyancy (LNB)30

and the level of maximum detrainment (LMD) as a proxy for the effective bulk convec-31

tive entrainment (εproxy). The LNB, the theoretical height that a parcel raised above32

the level of free convection would reach with no mixing, is calculated based on pre-convection33

radiosonde measurements using parcel theory. The LMD is the height of the maximum34

reflectivity observed in forward anvil clouds by profiling radars.35

Deep convective systems over the TWP show higher LNBs that extend to 16.3 km36

on average and larger εproxy (median LNB minus LMD up to 6.5 km) compared to their37

continental counterparts in the Amazon and West Africa. Oceanic conditions show larger38

convective available potential energy (CAPE) coupled with higher moisture at low lev-39

els which favors larger εproxy. In contrast, continental cases initiate and develop under40

high convective inhibition, steeper environmental lapse rate, and high wind shear con-41

ditions, which show smaller offset between LNB and LMD. Deep convective cases that42

promote significant cold pools at the surface experience less εproxy. Using a Random For-43

est regression algorithm, CAPE is associated with the highest feature importance score44

for predicting convective εproxy, followed by low-level relative humidity. For continen-45

tal cases, the low-level wind shear also indicates higher importance.46
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1 Introduction47

A common feature of tropical regions, deep convective clouds help regulate the global48

energy and water cycles (e.g., Fritsch et al., 1986; R. A. Houze, 2004; R. A. Houze Jr.,49

2018), and are the primary vehicle to transport heat, moisture, and momentum from the50

boundary layer upward to the dry upper troposphere and lower stratosphere through con-51

vective updrafts (e.g., Bretherton & Smolarkiewicz, 1989; de Rooy & Pier Siebesma, 2010).52

As cumulus convection deepens, an important aspect of its development is the horizon-53

tal outflow that preferentially occurs in the upper troposphere and is controlled by the54

strength of the convective updrafts. This outflow from the convective cores is called dy-55

namical detrainment (e.g., Raga et al., 1990; Dawe & Austin, 2011), and these detrain-56

ment processes help form widespread stratiform and long-lasting anvil clouds that in-57

fluence the net radiative forcing of the atmosphere (e.g., Hartmann et al., 2001; Jensen58

et al., 2002; Jensen & Del Genio, 2003; Stephens, 2005). Complementing these mass de-59

trainment processes are cloud entrainment processes that govern the updraft size and60

intensity, and affect the strength and depth of this mass transport (e.g., Stommel, 1947).61

Moreover, entrainment cools the ascending convective parcels and decreases the liquid62

water content in active convection by mixing drier, cooler environmental air into moist63

updraft regions. Thus, entrainment processes result in a dampening of convective buoy-64

ancy and a subsequent decrease in the level of maximum detrainment (e.g., Derbyshire65

et al., 2004; Del Genio & Wu, 2010).66

The treatment of the cloud entrainment/detrainment process has been identified67

as a bottleneck for current global climate model (GCM) representation of deep convec-68

tion, as well as simulations to cloud-resolving model (CRM) scales (e.g., Kain & Fritsch,69

1990; Bretherton et al., 2004; Romps, 2010; Klocke et al., 2011; Kim & Kang, 2012; Del Ge-70

nio et al., 2012; Stirling & Stratton, 2012; Anber et al., 2019). For instance, a small change71

to the parameterization of the entrainment rate can introduce a significant shift in the72

timing or amplitude of the convective diurnal cycle (e.g., Yang & Slingo, 2001; Del Ge-73

nio & Wu, 2010), thereby altering the large-scale circulation and resulting in significant74

climate variability (e.g., Tokioka et al., 1988; Maloney & Hartmann, 2001; Sanderson et75

al., 2008; Hannah & Maloney, 2011). One explanation for the continuing challenge is that76

observational constraints for model process improvement (or convective parameteriza-77

tion) including cloud entrainment rates, mass flux, and mass detrainment properties for78

deep and/or tropical cumulus are extremely difficult to obtain. Moreover, convective cloud79
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processes operate across a wide range of spatiotemporal scales, and aircraft in-situ ob-80

servations are costly, unavailable over remote tropical/oceanic regions, and hazardous81

in the stronger convective cloud conditions (e.g., Guo et al., 2015). Thus, observational82

constraints are often restricted to a small subset of convective cloud-types and thermo-83

dynamic conditions for limited parameterization improvement in the models (e.g., Co-84

hen, 2000; Mullendore et al., 2005).85

This study is motivated by the deficiencies in our observational understanding of86

the bulk entrainment and mass detrainment processes that impact tropical deep convec-87

tion. We emphasize the mass detrainment aspects of this problem, as it can be argued88

that current remote-sensing instrumentation are capable of characterizing the heights89

at which most of the air transported by convective updrafts detrains in convective anvil90

cloud regions. In this regard, observed detrainment levels are found to be strongly de-91

pendent on the updraft strength and the conditions in which that deep convection ini-92

tiates and develops (e.g., Hartmann & Larson, 2002). Furthermore, estimates for the ob-93

served levels of maximum detrainment (as well as the net detrainment mass flux) are ex-94

pected to vary significantly with convection type, size, and age (e.g., Barnes et al., 1996;95

Norgren et al., 2016). Previous studies (e.g., Takahashi & Luo, 2012) have argued that96

differences in the detrained outflow heights and the level of neutral buoyancy can act as97

a simple proxy for effective bulk convective entrainment. These concepts have been ap-98

plied to satellite-based observations to study cloud growth and entrainment for deep con-99

vective systems in the Tropics (e.g., Takahashi & Luo, 2012; Takahashi et al., 2017), as100

well as through the use of ground-based precipitation radar measurements applied to case101

study examples (e.g., Dual-Doppler radar; Mullendore et al., 2013; Carletta et al., 2016).102

However, this proxy bundles several non-adiabatic terms that impact convective plume103

buoyancy into a single quantity, due to the lack of observational platform constraints.104

The buoyancy of the rising air parcel could be affected by several processes other than105

entrainment, including hydrometeor drag, latent heating during hydrometeor phase changes,106

and nonhydrostatic pressure effects. Water loading contributes to frictional drag forces,107

as condensation and precipitation growth processes occur, which decreases the acceler-108

ation of the rising parcel (e.g., Jorgensen & LeMone, 1989). The significance of this con-109

tribution to convective vertical velocity remains a topic of debate (Sherwood et al., 2013;110

Romps & Charn, 2015). In addition, the perturbation pressure field plays a major role111
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in reducing the sharp gradients in vertical velocity near the cloud top (Holton, 1973; Chen112

& Sun, 2002).113

For simplicity, we refer to this as an effective bulk entrainment proxy (εproxy) and114

apply these ideas to an extensive ground-based archive for cloud observations. We draw115

from a multi-year, multi-site record available from the U.S. Department of Energy’s (DOE)116

Atmospheric Radiation Measurement (ARM) program that has advanced cloud sampling117

in remote, tropical regions (e.g., Mather & Voyles, 2013). ARM cloud radar observations118

are coupled with co-located, routine radiosonde launches to determine the εproxy for dif-119

fering tropical environments (i.e., continental, coastal, oceanic). A detailed description120

of the DOE ARM sites, instruments, measurements, and study methodology are given121

in Section 2. Section 3 describes the regional variations of thermodynamic conditions for122

identified deep convective systems. Section 4 explores how environmental parameters are123

related to the εproxy in tropical convective clouds, and which explain the most variabil-124

ity in the εproxy. We provide a summary of the primary conclusions from this study in125

Section 5.126

2 Date and Methods127

2.1 ARM Sites128

The ground-based measurement record from multiple U.S. DOE ARM sites (Stokes129

& Schwartz, 1994; Ackerman & Stokes, 2003; Mather & Voyles, 2013) provides the long-130

term and high-resolution observations of cloud properties and atmospheric state that form131

the basis of the analyses presented in this study. Our focus is on six ARM deployment132

sites in the Tropics, and includes fixed multi-year deployments and 1-2 year ARM Mo-133

bile Facility (AMF; Miller et al., 2016) deployments. We plot the locations and additional134

details for these deployments in Figure 1. Historically, the ARM program operated three135

fixed sites along the equator in the Tropical Western Pacific Ocean (TWP; Mather et136

al., 1998; Long et al., 2013, 2016), motivated by the need to sample the migration of the137

intertropical convergence zone (ITCZ) and the phases of the El Niño-Southern Oscilla-138

tion (ENSO). The initial TWP site (TWP-C1) was established on Manus Island in Papua139

New Guinea, in the middle of the tropical warm pool where the environment is influenced140

by the Madden-Julian oscillation (MJO) and the site experiences persistent cloudiness141

and rainfall (e.g., McFarlane et al., 2013). The second TWP site (TWP-C2) was located142
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on Nauru Island in the Republic of Nauru, on the eastern edge of the tropical warm pool.143

This location exhibits strong variability in precipitation characteristics and convective144

properties, as attributed to ENSO cycles (e.g., Jensen et al., 1998; Porch et al., 2006).145

A third coastal site (TWP-C3) was in Darwin, Australia, which is dominantly affected146

by the annual Australian monsoon system (e.g., P. T. May et al., 2012; Giangrande et147

al., 2014).148

Three additional tropical datasets were collected during recent AMF campaigns,149

which include one tropical-oceanic location and two tropical-continental deployments.150

The earliest continental-tropical site deployment was located in Niamey, Niger (NIM;151

Miller & Slingo, 2007), with AMF1 operations from January 2006 to January 2007 as152

part of the African Monsoon Multidisciplinary Analysis campaign (Lebel et al., 2003).153

This one-year experiment continuously measured the seasonal variations in cloud and154

radiation properties in Niamey, which are strongly influenced by Saharan desert dust and155

biomass burning during the dry seasons and frequent deep convective activity after the156

arrival of the West African Monsoon (e.g., Miller & Slingo, 2007; Slingo et al., 2008; Kol-157

lias et al., 2009). A second tropical-continental dataset was collected in the central Ama-158

zon basin near Manacapuru, Brazil (MAO) during the Observations and Modeling of the159

Green Ocean Amazon 2014-2015 (GoAmazon2014/5) Experiment from January 2014 to160

November 2015 (Martin et al., 2016). In the Amazonian tropical forest, the synoptic cir-161

culation patterns change across seasons impacting the convective cloud types and organ-162

ization, further complicating the aerosol-cloud-precipitation interactions (e.g., Giangrande163

et al., 2017; Machado et al., 2018; Wang et al., 2018). Finally, a tropical-oceanic deploy-164

ment of the AMF was on Gan Island, Maldives (GAN; Long, 2010, 2011), during the ARM165

MJO Investigation Experiment (AMIE-Gan) from October 2011 to March 2012. The GAN166

site is located in the middle of the Indian Ocean where the convection population and167

precipitation amount vary significantly according to the phases of the MJO (e.g., Yoneyama168

et al., 2013).169

2.2 Measurements170

The Active Remote Sensing of CLouds (ARSCL; Clothiaux et al., 2000; Kollias et171

al., 2005) value added product (ARM, 1999) is the primary dataset used in this study172

to identify deep convective clouds and characterize cloud properties. This product merges173

observations from vertically-pointing millimeter cloud radar, laser ceilometer, micropulse174
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lidar, and microwave radiometer to describe the cloud vertical structure at high resolu-175

tion (∼10 s, ∼ 24 m). Overall, ground-based cloud radars are capable of sampling the176

forward anvil clouds of deep convection when there is limited attenuation in rain and/or177

few underlying clouds (e.g., Kollias et al., 2007). At different locations, ARM cloud radars178

operate at different frequencies, with 95 GHz W-band ARM Cloud Radar (WACR; Widener179

& Mead, 2004; Giangrande et al., 2012) at NIM and MAO, and 35 GHz Ka-band ARM180

Zenith Radar (KAZR or MMCR [Millimeter-wavelength Cloud Radar]; Kollias et al., 2007;181

Widener et al., 2012) at GAN and the three TWP sites. Additional details on radar type182

and location are summarized in Table 1. Although these different radars and operating183

wavelengths carried different beamwidths, sensitivities to clouds, and slight changes in184

small anvil/ice particle scattering and/or potential for gaseous attenuation or attenu-185

ation in rain, these differences do not significantly impact the determination of the bulk186

anvil properties of interest for this study.187

The surface atmospheric conditions are provided by a collocated standard Surface188

Meteorological System (MET; ARM, 2013) at each ARM site. These sensors record 1-189

min observations of temperature, specific humidity, and rainfall rate. Depending upon190

the geographical area and local conditions, different types of surface sensors were deployed191

to measure these surface quantities. Detailed information on these sensors and additional192

surface variables measured at each ARM site can be found in Ritsche (2011) and Table193

1. Thermodynamic profiling is available from ARM radiosondes routinely launched 1 to194

6 times per day according to the site and field campaign designations (ARM, 2019). The195

Vaisala RS-92 radiosondes have been used as part of regular operations for ARM AMF196

deployments, and became a standard at all of the ARM sites since 2005 (Holdridge et197

al., 2011; Jensen et al., 2015). For the three TWP sites that have the longest records in198

the program, three generations of radiosondes (i.e., RS-80, RS-90, and RS-92) have been199

used and replaced since the beginning of the deployments (Holdridge et al., 2011, Ta-200

ble 1). For the planetary boundary layer (PBL) height, we use the estimates based on201

a bulk Richardson number method developed in Seibert et al. (2000) using the radiosonde202

measurements (Sivaraman et al., 2013; ARM, 2014).203
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2.3 Methodology204

2.3.1 Case Selection205

Deep convective events were selected based on time-height profiles of ARSCL best-206

estimate reflectivity (e.g., Figure 2). Selected events are required to have a cloud-top (radar207

echo top) height greater than 10 km, with an extensive forward anvil cloud, which is de-208

fined as extended cloud at the top and leading edge of a deep convective cloud with con-209

tinuing observations from ground-based profiling radar for a minimum of 30 minutes and210

having a cloud base above 5 km. These criteria are similar to previous satellite-based211

definitions in studies by Takahashi and Luo (2012) and Takahashi et al. (2017). We lim-212

ited our samples to the convective events that have radiosondes launched within 6 hrs213

prior to the convective updrafts passing over the sites. Based on this visual inspection,214

we identify 320 tropical deep convection events (listed in Appendix Table A1) that meet215

these criteria (i.e., 11 for GAN, 23 for NIM, 36 for MAO, 173 for TWP-C1, 16 for TWP-216

C2, 61 for TWP-C3). We plot an example of one event from 6 December, 2005 at the217

TWP-C1 site in Figure 2, with a forward anvil cloud indicated by the black box. Note218

that while the presence of a pronounced anvil feature intrinsically implies that we only219

consider deeper convective events at mature to later lifecycle stages, we recognize that220

the characteristics of convection (e.g., updraft intensity, cold pool properties, detrain-221

ment height) can also vary significantly from updraft-dominant early mature to downdraft-222

dominant later mature stages (e.g., Mullendore et al., 2013; Feng et al., 2018).223

2.3.2 Level of Neutral Buoyancy224

Pre-convection radiosondes are used to estimate thermodynamic variables follow-225

ing parcel theory with different assumptions, considering both irreversible pseudo-adiabatic226

and reversible moist adiabatic ascents. Ice phase is considered in the parcel model, which227

provides an additional source of positive buoyancy above the melting level from latent228

heat released during freezing. When assuming the air parcel experiences undiluted as-229

cent in a pseudo-adiabatic process, we neglect hydrometeor loading. An unsaturated air230

parcel lifted from the surface or boundary layer will eventually reach a level where it be-231

comes saturated due to dry adiabatic cooling (i.e., the lifting condensation level, LCL).232

As this air parcel is further lifted following the moist adiabatic lapse rate, it will rise to233

the level of free convection (LFC) where it becomes positively buoyant and accelerates234
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upward. When the buoyancy decreases to zero again during its ascent, this parcel reaches235

the level of neutral buoyancy (LNB). As the LNB calculation is highly sensitive to the236

choice of the initial parcel, we performed our tests for a surface-based parcel, the most237

unstable parcel, and the mixed-layer parcel. The surface-based parcel is defined as the238

parcel at the lowest sounding data level; the most unstable parcel is defined as the par-239

cel that has the greatest virtual temperature in the lowest 700 mb above surface; the mixing-240

layer parcel is defined as the parcel with properties of the mean of the boundary layer.241

Choosing the most unstable parcel elevates the LNB (LNBmu) by 0.6 km on average com-242

pared to the surface-based LNB (LNBsfc, Figure 3a), which is consistent with findings243

in Mullendore et al. (2013). When considering the mixed-layer parcel (in order to elim-244

inate the enhanced heating at the surface), the mean LNB lowers dramatically (by 1.6245

km compared to LNBmu) as the calculation is based on the mean air parcel condition246

(e.g., temperature and humidity) below the PBL height. In order to investigate the lim-247

itation of pseudo-adiabatic assumption and the role of hydrometeor loading on parcel248

buoyancy, we incorporate reversible moist adiabatic ascent in the parcel model. Assum-249

ing reversible moist adiabatic ascent reduces buoyancy and lowers the mean LNB (LNBrev)250

by about 2.5 km compared to the irreversible pseudo-adiabatic ascent (LNBmu, Figure251

3a).252

2.3.3 Level of Maximum Detrainment253

In reality, the convective air parcel rarely rises to the LNB before detraining from254

the convective cores. The buoyancy of the rising air parcel will be affected by entrain-255

ment, hydrometeor drag, latent heating during hydrometeor phase changes, and nonhy-256

drostatic pressure effects. Through the combined influences of these processes, the level257

of maximum detrainment (LMD), as the altitude where most of the air mass and ice par-258

ticles detrain horizontally after convective parcels decelerate, will be lower than the es-259

timated LNB.260

Following Mullendore et al. (2009) and Takahashi et al. (2017), the LMD is deter-261

mined by the height of the maximum radar reflectivity within the forward anvil cloud.262

We calculate the bulk entrainment rate proxy, εproxy (e.g., Takahashi & Luo, 2012) as263

the difference between the idealized LNB and observed LMD, recalling that this proxy264

encompasses the effects of entrainment and other processes that contribute to the de-265

celeration of the rising convective parcel. To avoid the noisiness in the measurements,266
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our first step is to average the reflectivity field within the forward anvil clouds at each267

height level, then locate the maximum mean reflectivity in altitude (LMDmean). As a268

sensitivity test for this approach, we also consider the height of the maximum reflectiv-269

ity in the anvil without performing the averaging step (LMDmax). The probability den-270

sity functions of LMDs are plotted in Figure 3a as compared to the LNBs estimated for271

all events. The distributions of LMDmean and LMDmax are nearly identical (mean ∼272

10.5 km) and lower than the corresponding LNBmu with an average offset of ∼ 5 km,273

as shown in Figure 3b. These differences are comparable to previous findings based on274

satellite observations and parcel model calculations with the irreversible pseudo-adiabatic275

assumption (offset ∼ 4 km, Takahashi et al., 2017). This 1-km difference between satel-276

lite and ground-based methods is potentially attributed to differences in vertical reso-277

lution and attenuation between the CloudSat nadir-pointing W-band (94 GHz) Cloud278

Profiling Radar (Tanelli et al., 2008) and ARM ground-based profiling radars (KAZR,279

MMCR, and WACR; Kollias et al., 2007; Widener et al., 2012), as well as the different280

radar sensitivity limits when sampling anvil ice particles (e.g., higher ground-radar sen-281

sitivity). Another contributing factor is that cumulative ARM dataset properties are dom-282

inated by TWP oceanic cases that should promote relatively higher LNBs compared to283

other tropical sites.284

Note that, the irreversible pseudo-adiabatic and reversible moist adiabatic ascents285

are both idealized extremes, and the real LNB falls somewhere in between. This partially286

explains the negative εproxy values in Figure 3b, where the LNBs are being underesti-287

mated for the cases that have hydrometeors fall out of the parcel. When using mixed-288

layer parcels, negative εproxy values could also be expected, since we assume the entire289

boundary layer is well mixed prior to convection, which represents another extreme case.290

In addition, the errors in the PBL height retrievals, the representativeness of the selected291

soundings for the local condition, and the limitations in the parcel theory such as in re-292

alistically describing the size of the initial parcel and the lifting mechanisms add addi-293

tional uncertainties to the εproxy estimates.294

2.3.4 Candidate Environmental Parameters295

We consider a subset of candidate environmental parameters that are anticipated296

to be important for determining entrainment, updraft strength and regulating the over-297

all convection evolution (e.g., Weisman & Klemp, 1984; Lucas et al., 1994b; McCaul &298
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Weisman, 2001; Kirkpatrick et al., 2009; Wang et al., 2019). Bulk environmental param-299

eters such as convective available potential energy (CAPE) and vertical wind shear of300

the horizontal winds are important drivers of the convective lifecycle and are often com-301

ponents of convective parameterization schemes (e.g., Zhang & McFarlane, 1995; Gre-302

gory, 2001). Additional variables such as the convective inhibition (CIN), LFC, and the303

vertical distribution of cloud parcel buoyancy also have an important impact on the con-304

vective properties. In this study, a total of nine environmental quantities of interest are305

chosen as candidates for explaining the variability in the εproxy.306

The CAPE, a measure of the work done by a parcel ascending from the LFC to the307

LNB, is a critical control in understanding deep convective clouds. We calculate CAPE308

under both irreversible pseudo-adiabatic ascent (for three different initial parcels, includ-309

ing the surface parcel, the most unstable parcel, and the mixed layer parcel, as CAPEsfc,310

MUCAPE, and CAPEmix, respectively) and reversible moist adiabatic ascent (for the311

most unstable parcel, as CAPErev). The mean CAPEsfc (2357 J/kg), CAPEmix (1192312

J/kg), and CAPErev (985 J/kg) are much lower than the mean MUCAPE (2820 J/kg),313

demonstrating how this calculation of CAPE is sensitive to the thermodynamic charac-314

teristics of the initial parcel and the microphysical assumptions in the parcel model. To315

represent the shape of the buoyancy profile, we also calculate low-level CAPE (LCAPE)316

following Blanchard (1998) by integrating buoyancy through 4 km above the LFC. In317

addition, we also consider other environmental parameters of interest, such as the en-318

vironmental temperature lapse rates (ELRs, 0-3 km and 3-6 km), the low-level mean rel-319

ative humidity (RH) from surface to 5 km, and the low-level vector wind shear (surface320

to 5 km). These quantities are calculated from ARM radiosondes following Wang et al.321

(2019).322

The strength of convection can be quantified in multiple ways. For this study, we323

use the intensity of convective cold pools as a proxy for convective strength. The con-324

vective cold pool fronts are identified by a rapid decrease of surface equivalent poten-325

tial temperature (4θe) when the convective cells pass over the ARM sites, followed by326

a slow recovery. The cold pool strength is defined as the maximum 4θe within a 30-min327

time period around the maximum rainfall rate observed by ARM surface rain gauges (Schiro328

& Neelin, 2018; Wang et al., 2019). Note that, as in many other profiling radar/satellite/aircraft329

studies, we face a challenge due to the possible ’random’ nature of the samples. Even330

though the selected cases all show mature convective signatures when passing over our331
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radar and surface measurements, we may not ideally sample the center of the precipi-332

tation/cold pool cores. This could potentially result in an underestimation of precipi-333

tation rate/cold pool strength.334

3 Regional Comparison of Environmental Parameters335

3.1 Thermodynamic Conditions336

For each case, we calculate the full set of environmental parameters and generate337

composite profiles and site summary statistics. In Figure 4, we plot the composite skew-338

T log-P diagrams (using open source code MetPy; R. M. May et al., 2008 - 2020) from339

the radiosondes for each ARM site, once again for radiosondes launched prior to convec-340

tive cores. The green solid lines in Figure 4 represent measured mean dew-point tem-341

perature profiles, while the red lines are the mean temperature profiles. The overlaid red342

shading on this figure indicates the mean MUCAPE, while the blue shading is the mean343

MUCIN. Note that the actual CAPE calculation is based on the virtual potential tem-344

perature framework, following Bryan and Fritsch (2002). In Figure 5, we plot the dis-345

tributions of candidate environmental variables for each ARM site, calculated based on346

the most unstable parcel assuming irreversible ascent. Overall, distinct differences are347

observed between the associated thermodynamic conditions of interest estimated at the348

various tropical sites.349

Among the sites considered, water vapor availability varies significantly. For the350

sites that are located on tropical islands (GAN, TWP-C1, TWP-C2), large amounts of351

moisture are available from the Pacific and/or Indian oceans, associated with higher dew-352

point temperatures throughout the troposphere (Figures 4a-c). On average, the median353

low-level RHs reach 80% at these sites in the times preceding convection (Figure 5a), which354

is essential to deep convection onset (e.g., Schiro & Neelin, 2019). Over the Amazon Basin355

(MAO, Figure 4e), sufficient moistening is also found prior to convection, as a result of356

the synoptic moisture advection from the Atlantic Ocean (e.g., Drumond et al., 2014;357

Giangrande et al., 2020, especially during the wet and transitional seasons), water va-358

por detrained from shallow cumulus convection, as well as the local supply through evap-359

otranspiration (e.g., Collow et al., 2016; Schiro et al., 2016; Giangrande et al., 2017). Com-360

pared to the continental-tropical Amazon cases, the maritime continent Darwin compos-361

ite (TWP-C3) shows a large spread in RH throughout the troposphere (Figure 4d, Fig-362
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ure 5a). This wider distribution reflects the variability through the phases of the north363

Australian monsoon season (active and break periods; Pope et al., 2009). During the ac-364

tive monsoon, the coastal TWP-C3 site experiences deep westerlies and north-westerly365

winds near the surface that bring substantial moisture from the Tropics to northern Aus-366

tralia. When the monsoon undergoes its break period, winds become easterly and less367

conducive to moisture transport (e.g., Evans et al., 2014). At the continental West Africa368

(NIM; Figure 4f) site, relatively less water vapor is available for deep convection (me-369

dian low-level RH ∼ 70%), and the moisture availability highly depends on the onset/retreat370

of the West African monsoon (e.g., Mera et al., 2014).371

For each site, there is strong evidence for a variety of convection that initiates and372

develops uniquely across different thermodynamic environments.373

a) In oceanic environments, the surface/near-surface air parcel does not require sig-374

nificant lifting to reach saturation (median LCLs below 0.6 km, Figure 5b) as a375

result of the higher moisture availability within the boundary layer. The impli-376

cation is that the LFCs are also lower for these cases, which helps promote more377

frequent convection (Figure 5c). Rising parcels under these conditions can ideally378

extend higher in the troposphere, as suggested by a median LNBmu exceeding 15.7379

km (Figure 5j). This contrasts with continental counterparts (MAO and NIM sites),380

which suggest a ’skinny’ mean MUCAPE profile (e.g., Lucas et al., 1994b, Fig-381

ures 4a-c). This LNB distribution is consistent with the LNB map generated us-382

ing the A-train satellite dataset in Takahashi et al. (2017).383

b) Over the West African continent (NIM), the pre-convective environment exhibits384

an enhanced stable layer with higher LFC (median = 2.1 km) compared to other385

island and continental sites (Figure 5c). This stable layer caps the boundary layer386

and is associated with a large amount of negative buoyancy (median MUCIN =387

-30 J/kg, Figures 4f, 5d). In addition, we observe steeper ELRs (median ELR0−3km388

= 6.3 ◦C/km, median ELR3−6km = 6.2 ◦C/km, Figures 5e, f) with parcel tem-389

perature largely exceeding the temperature of the surrounding air. This implies390

larger parcel buoyancy within the low- and mid-troposphere. As shown in Figure391

4f and Figure 5g, the MUCAPE profile composite at NIM has ∼ 100 J/kg more392

integrated buoyancy at low levels (median LCAPE = 611 J/kg) compared to the393

oceanic composites (median LCAPE ≤ 484 J/kg).394
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c) The other continental site MAO and the coastal site TWP-C3 have slightly higher395

LFCs (median ≥ 0.8 km) than their oceanic counterparts (median ≤ 0.7 km) that396

are associated with larger ranges of CIN values. At the TWP-C3 site, the mon-397

soon break period promotes higher CIN values compared to the active phase (e.g.,398

M. Pope et al., 2009), which favors isolated deep convection with more intense up-399

drafts (e.g., Keenan & Carbone, 1992). Significant shifts in MUCIN and several400

other environmental parameters across MAO seasons are also observed in previ-401

ous studies (e.g., Giangrande et al., 2017, 2020; Wang et al., 2018). Even though402

substantial MUCAPE values are found at all sites before convective initiation (me-403

dian ≥ 2651 J/kg; Figure 5h), a large percentage of the MUCAPE extremes are404

observed at MAO site with fatter buoyancy profiles throughout the troposphere405

(Figure 4e).406

In terms of the mass detrainment process in deep convection (Figure 5k), every ARM407

tropical site exhibits a similar median LMDmean (∼ 10 km) but with quantifiable vari-408

ability. An exception is the TWP-C3 site, showing the highest median (11.7 km) and409

extreme of LMD. LMD is found to be negatively correlated with low-level RH (r = -0.3,410

not shown), suggesting a higher LMD for cases that developed in a drier condition. How-411

ever, the dependence of LMD on other environmental controls such as CAPE is much412

weaker (r < 0.1, not shown).413

Consistent with the results of Takahashi and Luo (2012), the mean offsets (LNBmu414

minus LMDmean, Figure 5l) for oceanic cases are greater compared to their continen-415

tal and coastal counterparts, suggesting larger εproxy in these systems. When consider-416

ing surface, mixed-layer parcels, and irreversible ascent, the εproxy estimates yield sim-417

ilar ocean-land contrast (not shown). Note that the same microphysical assumptions are418

used in the parcel theory model for all the tropical sites, without considering the regional419

and/or climatological differences. This may add additional uncertainties in the deter-420

mination of the LNB and hence the εproxy estimates.421

4 Environmental Conditions Impacting Effective Bulk Entrainment422

The large-scale environmental conditions interact with deep convective systems through423

the entrainment and mixing processes (e.g., Jensen & Del Genio, 2006; Stirling & Strat-424

ton, 2012; Böing et al., 2014). In order to explore the links between different environ-425
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mental factors and the εproxy, we plot the selected candidate variables discussed in pre-426

vious sections as a function of the difference between LNB and LMD (Figure 6). These427

quantities are grouped into 1 km increments for our εproxy. To investigate whether the428

relationships are sensitive to the choice of the initial air parcel and the microphysical as-429

sumptions in the parcel model that determines LNB and other explanatory factors, we430

compare the results using the surface-based parcel (Parcelsfc), the most buoyant par-431

cel (Parcelmu), and the mixed-layer parcel with irreversible pseudo-adiabatic and reversible432

moist adiabatic ascents. The uncertainty in LMD estimation (e.g., usage of LMDmean433

versus LMDmax) definitions is also considered in the comparison.434

4.1 Relationships Between the Environmental Parameters and Effec-435

tive Bulk Entrainment436

For the relationships between the environmental parameters and the εproxy (Fig-437

ure 6), the linear correlation coefficients are found to be weak to moderate (i.e., r ≤ 0.6).438

These relationships with CAPE, CIN, and LFC, to a certain extent, are sensitive to the439

choice of different originating air parcels, showing slightly higher correlations for quan-440

tities calculated using the surface and mixed-layer parcels (not shown) compared to the441

most unstable parcel. However, as correlation coefficients are intended for quantities that442

are linearly related, these calculations are provided as one reference, but do not fully quan-443

tify the complex relationships between entrainment and surrounding environment. Note444

that fully isolating entrainment from all the potential contributing factors, the pertur-445

bation pressure field in particular, is extremely difficult using existing observational datasets.446

However, when considering a reversible ascent of the air parcel, higher correlations are447

shown with CAPE, CIN, and LFC, which, to a certain extent, emphasizes the depen-448

dence of entrainment on these environmental controls.449

The CAPE is positively correlated with εproxy (Figure 6a), suggesting that entrain-450

ment and the additional non-adiabatic contributions tend to be more efficient for the events451

that have larger CAPE (r ∼ 0.5 with surface parcels). This is explained due to higher452

CAPE corresponding to a larger buoyancy term in the turbulent kinetic energy budget453

(e.g., S. B. Pope, 2000; Jensen & Del Genio, 2006). Figures 6b-c show a decrease in the454

value of εproxy when increasing the CIN (CIN increasing to greater negative values) and455

the LFC. One explanation for these behaviors is that the CIN and LFC negatively con-456

tribute to the total buoyancy, therefore cases with substantial CIN and/or higher LFC457
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tend to be less favorable for mass entraining into the convective updraft regions. The458

ELR also shows a negative correlation with εproxy (Figure 6d). Since a steeper ELR cor-459

responds to a ’fatter’ buoyancy profile, CAPE concentrates at lower levels and an air par-460

cel accelerates more quickly through those levels. This faster accelerating parcel would461

reduce the amount of time/exposure for entrainment and other processes to occur.462

We observe a steady increase in εproxy with increasing low-level RH (Figure 6e).463

A higher RH environment promotes entrainment through its effects on buoyancy pro-464

duction of the turbulent kinetic energy (Jensen & Del Genio, 2006; Lu et al., 2018; Stan-465

field et al., 2019). In Figure 6f, the εproxy indicates a negative weak correlation with con-466

vective cold pool strength (i.e., 4θe). This result is consistent with the presence of cold467

pools implying the propensity of the atmosphere to promoting deeper and more intense468

convection/updrafts that are less impacted by entrainment (e.g., Böing et al., 2012) and469

other non-adiabatic processes. Besides, stronger cold pools generated by more intense470

convective downdrafts are anticipated to create larger eddies at the gust fronts. These471

larger eddies entrain less than the smaller turbulent eddies in the boundary layer (e.g.,472

Kuang & Bretherton, 2006; Khairoutdinov & Randall, 2006).473

In Figure 7, we break down these relationships for oceanic (i.e., GAN, TWP-C1,474

TWP-C2) and continental/coastal (i.e., NIM, MAO, TWP-C3) cases. For examples in475

Figure 7, only the most unstable parcel followed irreversible ascent is shown on these plots,476

and we only consider the LMDmean, as the other previously discussed combinations yield477

similar results. Overall, this subset of relationships is in agreement with previous cumu-478

lative dataset arguments as shown in Figure 6. The continental/coastal events demon-479

strate a slightly higher correlation overall, compared to the oceanic counterparts, how-480

ever, this land-ocean contrast becomes minimal when using surface parcels and/or as-481

suming reversible moist adiabatic ascent (not shown). Note that, for surface-based cal-482

culations, the changes in correlations for continental cases are negligible, as most of the483

most unstable parcels are the surface parcels over the land.484

Other environmental variables of interest (ELR0−3km, LCL, wind shear) all show485

weak correlations with εproxy (not shown). The ELR0−3km is positively correlated with486

εproxy (weak r ∼ 0.2), since larger ELR0−3km tends to promote higher CAPE (r = 0.43,487

Figure 8) in the Tropics. The LCL found to have negative correlation with εproxy (weak488

r ∼ -0.2), as it is highly related to LFC (r = 0.68, Figure 8). εproxy responses to wind489
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shear changes are complex and found to be regime-dependent, with higher correlation490

for the continental cases compared to oceanic counterparts (not shown). Note that the491

environmental conditions impact εproxy through their controls on both LNB and LMD.492

The CAPE and CIN are found to have a higher correlation with LNB than with LMD493

and the low-level RH is found to be more strongly related to LMD than to LNB (not shown).494

4.2 Factors Controlling Effective Bulk Entrainment Proxy495

There are several ongoing challenges related to how the entrainment and other non-496

adiabatic processes in deep convection respond to changes in environmental conditions,497

and which environmental or thermodynamic quantities of interest have the greatest pre-498

dictive capabilities to inform on those processes (e.g., Hannah, 2017). For this study, we499

use a Random Forest (RF) method to investigate the importance of several candidate500

quantities in explaining the observed εproxy in deep convection. The RF regression al-501

gorithm (Breiman et al., 1984; Quinlan, 1993) is an ensemble-learning algorithm that502

combines a large set of regression trees. The main advantages to applying RF methods503

to address this question is that these methods handle non-linear parameters efficiently,504

require no feature scaling, and have a low overfitting risk (Breiman, 2001). We accom-505

plish this using the open-source Scikit-learn’s RF regression algorithm (toolkit from Pe-506

dregosa et al., 2011). We optimize the RF approach by tuning two important param-507

eters, the number of regression trees and the number of inputs per node. After perform-508

ing these sensitivity tests, 500 regression trees are included in the RF with 5 inputs per509

node, since this combination yields the lowest root mean square error for our particu-510

lar application.511

The RF regression algorithm reports the feature importance score for each input512

quantity (e.g., Breiman, 2001; Liaw & Wiener, 2002). As shown in Figure 9a, the MU-513

CAPE and low-level RH exhibit higher feature importance scores (0.19 and 0.17) com-514

pared to other candidates, indicating these indices as more important to quantifying εproxy515

in tropical deep convection. This finding is consistent with the previous work by Jensen516

and Del Genio (2006) for tropical cumulus congestus clouds observed at Nauru (TWP-517

C2). Other environmental variables suggest relatively lower feature importance, with the518

implication that these quantities are not informative to the governing factors for the εproxy519

in tropical deep convective clouds. When considering calculations based on other initial520
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parcels (i.e., surface- and mixed-layer), CAPE always obtains the highest feature impor-521

tance score compared to other environmental variables.522

The feature importance scores have been separately calculated for the oceanic and523

continental event observations (Figures 9b-c). For the continental cases, in addition to524

MUCAPE and low-level RH, the vertical wind shear reports a relatively higher feature525

importance score. Again, this suggests that low-level wind shear provides greater impor-526

tance in determining the εproxy compared to the oceanic cases. For the continental cases,527

one interpretation is that strong vertical wind shear promotes more interactions with the528

updrafts, and affects the vertical acceleration (e.g., Peters et al., 2019). When assum-529

ing reversible moist adiabatic ascent, CAPE remains the most important feature to the530

εproxy prediction. However, CIN is found to be equally important compared to vertical531

wind shear in determining εproxy for continental cases.532

Note that the RF approach could potentially underestimate the contribution of cer-533

tain quantities as a predictor when they are correlated with other inputs, even though534

this effect is somewhat reduced owing to random selection of inputs at each node cre-535

ation. On the other hand, this is one of the advantages of using RF for reducing over-536

fitting problems, since it removes features that are mostly duplicated by other features.537

5 Conclusions538

This study summarizes the characteristics and regional variations of the outflow539

heights (LNB, LMD) and, by proxy, the εproxy (LNB minus LMD) in tropical deep con-540

vective clouds. Note that, when assuming irreversible pseudo-adiabatic ascent in the LNB541

calculation, this εproxy includes the effects of processes other than entrainment (e.g., con-542

densation loading and pressure perturbation forces) that also impact the buoyancy in543

convective updrafts. We further investigate the contribution of condensation loading by544

including reversible moist adiabatic ascent in the parcel model. The subsequent inves-545

tigation explores how the εproxy is related to the pre-convection environmental condi-546

tions using observations obtained from six ground-based DOE ARM sites in the Trop-547

ics. These multi-year datasets provide a considerable number of cases from diverse trop-548

ical environments including long-term observations from the Tropical Western Pacific549

Ocean (TWP-C1, TWP-C2, TWP-C3), West Africa (NIM), the Amazon basin (MAO),550

and the Indian ocean (GAN).551
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The key findings of this study are as follows:552

a) Oceanic deep convective systems occur in a moist environment (median low-level553

RH ∼ 80%) with near-surface LCL and LFC. ’Skinny’ CAPE profiles are found554

preceding convection, with small buoyancy accumulated at low levels (median LCAPE555

∼ 440 J/kg), which matches those observed in previous oceanic examples (e.g.,556

Lucas et al., 1994b, 1994a).557

b) Pre-convection soundings over the continent feature higher LCLs, LFCs, and steeper558

ELRs. These conditions lead to a more significant CIN and larger LCAPE. The559

most pronounced examples for this are observed for the West Africa (NIM) datasets,560

where the vertical wind shear is also found to be stronger. Reduced lower-tropospheric561

water vapor is available for the continental cases compared to their oceanic coun-562

terparts.563

c) Median LNBs (using irreversible pseudo-adiabatic ascent) in oceanic events ex-564

ceed 15.7 km, with the maximum height (16.2 km) at Nauru Island (TWP-C2)565

in the Equatorial Pacific Ocean. Assuming reversible moist adiabatic ascent low-566

ers the mean LNB by 2.5 km. In terms of LMD, all tropical sites exhibit a sim-567

ilar median value (∼ 10 km). The exception is the Darwin (TWP-C3) site, where568

the LMD extends higher and to 11.7 km on average, due to those low RH extremes.569

The LNB and LMD differences (i.e., εproxy) are found to be greater in oceanic cases570

compared to those in continental and coastal events. This finding is consistent with571

previous studies by Zipser (2003) and Takahashi et al. (2017).572

d) The εproxy varies depending on the environmental humidity and stability. Deep573

convective clouds that occur during periods with larger CAPE and/or higher low-574

level RH tend to have larger differences between the LMD and LNB. This behav-575

ior suggests larger εproxy and more dilution of the convective updrafts for those576

conditions. In contrast, the suggestion is that more stable conditions with larger577

CIN/steeper ELR/higher LFC tend to suppress the εproxy. Similarly, we find that578

events that produce stronger convective cold pools at the surface apparently ex-579

perience reduced εproxy. For all the parameters considered (based on application580

of a RF regression approach), CAPE has the highest feature importance score in581

determining the εproxy, followed by low-level RH. The vertical wind shear and CIN582

also indicate increased importance in their role in controlling εproxy for continen-583

tal deep convective clouds.584
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This study advances our understanding of the interaction between tropical deep585

convection and its surrounding environment, and which atmospheric conditions are fa-586

vorable for buoyancy reducing processes (e.g., entrainment) on convective updrafts. The587

relationships between the εproxy and environmental variables have potential uses in con-588

vection parameterization development and provide further constraints to climate mod-589

els. For example, as the CAPE is by far the most important environmental control for590

εproxy prediction, the CAPE profile and/or amount could be used as a scaling factor for591

the lateral entrainment rates in the models. In addition, lateral entrainment rates that592

are a function of RH may be appropriate since it has been found to have the second high-593

est feature importance in εproxy prediction.594
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Table 1. Information for the ARM fixed sites and AMF deployments presented in this study.

See Ritsche (2011) and Holdridge et al. (2011) for more details about the sensors.

ARM Site Location Observation Period Instruments (Sensors)

Gan Island,

Maldives

(GAN)

0◦41′25.3248”S,

73◦9′0.36”E; Central

Indian Ocean

Oct. 2011 - Mar. 2012

ARM Madden-Julian os-

cillation Investigation

Experiment (AMIE-Gan)

AMF2 SONDE (RS92); MET (HMP-

155 T/RH probe, Ultrasonic WS425

Wind Monitor, PTB-330 Barometer, 815-

DA Optical Sci ORG, PWD22 Present

Weather Detector); KAZR

Niamey,

Niger (NIM)

13◦28’38.28”N,

2◦10’32.88”E; West

African

Jan. 2006 - Jan. 2007

African Monsoon Mul-

tidisciplinary Analysis

campaign

AMF1 SONDE (RS92); MET (HMP-

45D T/RH probe, 05106 Wind Monitor,

PTB-220 Barometer, 815 Optical Sci

ORG, PWD22); WACR

Manacapuru,

Brazil (MAO)

3◦12’46.692”S,

60◦35’53.16”W;

Central Amazon

Basin

Jan. 2014 - Nov. 2015 Ob-

servations and Modeling

of the Green Ocean Ama-

zon 2014-2015 Experiment

(GoAmazon2014/5)

AMF1 SONDE (RS92); MET (HMP-

45D T/RH probe, 05106 Wind Monitor,

PTB-220 Barometer, 815 Optical Sci

ORG, PWD22); WACR

Manus Is-

land, Papua

New Guinea

(TWP-C1)

2◦3’36”S,

147◦25’30”E; Mid-

dle of the Tropical

Warm Pool

Jan. 1996 - Aug. 2014 (Pe-

riod from Jul. 1999 to Feb.

2011 is considered in this

study)

SONDE (RS80, RS90, RS92); MET

(HMP-45D T/RH probe, 05106 Wind

Monitor, PWD22, 815 Optical Sci

ORG and RIMCO 7499 TBRG);

MMCR/KAZR (After Mar. 2011)

Nauru Island,

Republic

of Nauru

(TWP-C2)

0◦31’15.6”S,

166◦54’57.6”E;

Eastern Edge of the

Warm Pool

Jan. 1998 - Aug. 2013

(Period from Jun. 2001 to

Apr. 2007 is considered in

this study)

SONDE (RS80, RS90, RS92); MET

(HMP-45D T/RH probe, 05106 Wind

Monitor, 815 Optical Sci ORG and

RIMCO 7499 TBRG); MMCR

Darwin,

Australia

(TWP-C3)

12◦25’30”S,

130◦53’31.2”E;

Australia North

Coast

Jan. 2002 - Dec. 2014 SONDE (RS80, RS90, RS92); MET

(HMP-45D T/RH probe, 05106 Wind

Monitor, PWD22, 815 Optical Sci

ORG and RIMCO 7499 TBRG);

MMCR/KAZR (After Jan. 2011)

ARM=Atmospheric Radiation Measurement; AMF=ARM Mobile Facility; MET=The ARM Surface Meteo-
rology Systems; KAZR=The Ka-band ARM Zenith Radar; WACR=The 95 GHz W-band ARM Cloud Radar;
SONDE=Balloon-borne sounding system; MMCR=Millimeter-wavelength Cloud Radar.–21–
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Figure 1. Map of the Atmospheric Radiation Measurement (ARM) fixed sites at Manus

Island (TWP-C1), Nauru Island (TWP-C2) and Darwin (TWP-C3), Australia, and the ARM

Mobile Facility deployments in Niamey, Niger (NIM), Gan Island, Maldives (GAN), and Manaca-

puru, Brazil (MAO).
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Figure 2. Deep convective example observed by an ARM profiling radar (MMCR) on 06

December, 2005 at the ARM TWP-C1 site in Manus. The colors are the radar reflectivity field

in dBZ. The red line indicates the level of maximum detrainment (LMD) and the black box is

the identified forward anvil. ARM=Atmospheric Radiation Measurement, MMCR=Millimeter-

wavelength Cloud Radar.
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Figure 3. (a) Probability density functions (PDFs) of the levels of neutral buoyancy (LNBs)

estimated based on surface parcel (LNBsfc), the most unstable parcel in the low levels (LNBmu),

and the mixed-layer parcel within the boundary layer (LNBmix) assuming irreversible pseudo-

adiabatic ascent, and the levels of maximum detrainment (LMDmax, LMDmean) estimated from

profiling radar. LNBrev is estimated assuming reversible moist adiabatic ascent in the parcel

model for the most unstable parcel. (b) PDFs of LNBs minus LMDmean (εproxy). The solid lines

are the PDFs calculated using gaussian kernel density estimation.
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Figure 4. Composite pre-storm soundings for each site. The red line is the mean dry bulb

temperature, the green line is the mean dew-point temperature and the black line represents the

mean dry bulb temperature of a rising parcel originating from the most unstable layer. The red

shading represents the most unstable convective available potential energy (MUCAPE), while

blue is the most unstable convective inhibition (MUCIN). The grey dots indicate the levels of free

convection (LFCs), the blue dots are the levels of neutral buoyancy (LNBs), and the yellow dots

are the lifting condensation levels (LCLs).
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Figure 5. Box and whisker plots of environmental variables for each site (parcel follows ir-

reversible pseudo-adiabatic ascent and ice processes are included). The middle lines show the

median values. The colored boxes represent observations inside the 25th - 75th percentile range.

The whiskers show the 10th/90th percentile value. RH=Relative Humidity; LCL=Lifting Con-

densation Level; LFC=Level of Free Convection; MUCIN=Most Unstable Convective Inhibition;

ELR=Environmental Lapse Rate; LCAPE=Low-level Convective Available Potential Energy;

MUCAPE= Most Unstable Convective Available Potential Energy; LNB=Level of Neutral Buoy-

ancy; LMD=Level of Maximum Detrainment.
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Figure 6. Mean environmental variables for each bin plotted as a function of εproxy (LNB

minus LMD) for all sites. Bins have a width of 1 km, and error bars represent ±1 standard devi-

ation. Solid lines are the linear least squares regression fits. All the correlations pass the signifi-

cance tests, except for 4θe - εproxy relationships for parcelsfc and parcelrev. CAPE=Convective

Available Potential Energy; CIN=Convective Inhibition; LFC=Level of Free Convection;

RH=Relative Humidity; ELR=Environmental Lapse Rate; LNB=Level of Neutral Buoyancy;

LMD=Level of Maximum Detrainment.
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Figure 7. Same as Figure 6, but for continental, coastal (dark orange) and oceanic events

(green), separately, using the most unstable air parcel and LMDmean and assuming irreversible

ascent.
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Figure 8. Correlation matrix for environmental variables (parcel follows irreversible pseudo-

adiabatic ascent).
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Figure 9. Bar diagram of the feature importance scores estimated for 9 environmental vari-

ables using a Random Forest algorithm to predict εproxy for (a) all the deep convective cases;

(b) for only oceanic cases; (c) for only continental cases. The input and output variables are

calculated using the most unstable air parcel and assuming irreversible pseudo-adiabatic ascent

and LMDmean. ELR=Environmental Lapse Rate; RH=Relative Humidity; LCL=Lifting Con-

densation Level; LFC=Level of Free Convection; MUCIN=Most Unstable Convective Inhibition;

LCAPE=Low-level Convective Available Potential Energy; MUCAPE=Most Unstable Convective

Available Potential Energy.
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Appendix A List of Selected Tropical Deep Convective Cases595
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a) The Active Remote Sensing of CLouds (ARSCL) products: https://adc.arm.gov/615

discovery/#v/results/s/finst::kazrarscl/fdpl::ganarsclkazr1kolliasM1616

.c1/fdpl::twparsclkazr1kolliasC1.c1/fdpl::twparsclkazr1kolliasC3.c1617

https://adc.arm.gov/discovery/#v/results/s/finst::arscl/fdpl::twparscl1clothC1618

.c1/fdpl::twparscl1clothC2.c1/fdpl::twparscl1clothC3.c1 https://adc619

.arm.gov/discovery/#v/results/s/finst::wacrarscl/fdpl::maoarsclwacr1kolliasM1620

.c1/fdpl::nimarsclwacr1kolliasM1.c1621

b) The Surface Meteorology Systems (MET): https://adc.arm.gov/discovery/622

#v/results/s/finst::met/fdpl::ganmetM1.b1/fdpl::nimmetM1.b1/fdpl::623

twpmetC1.b1/fdpl::twpmetC2.b1/fdpl::twpmetC3.b1/fdpl::maometM1.b1/624

fdpl::nimmetS1.b1625

c) Radiosondes: https://adc.arm.gov/discovery/#v/results/s/finst::sonde/626

fdpl::gansondewnpnM1.b1/fdpl::maosondewnpnM1.b1/fdpl::nimsondewnpnM1627
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.b1/fdpl::twpsondewnpnC1.a1/fdpl::twpsondewnpnC1.b1/fdpl::twpsondewnpnC2628

.a1/fdpl::twpsondewnpnC2.b1/fdpl::twpsondewnpnC3.b1629

d) The Planetary Boundary Layer Height (PBLHT): https://www.archive.arm.gov/630

discovery/#v/results/s/fdsc::pblhtsonde1mcfarl/fsite::twp.P/fsite::631

gan.M/fsite::mao.M/fsite::nim.M632

Python machine learning codes were provided by Scikit-learn, as from Pedregosa633

et al., (2011).634
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